- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Amir, Malik (1)
-
Hong, Letong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan $$\tau $$ τ -function, one may ask whether an odd integer $$\alpha $$ α can be equal to $$\tau (n)$$ τ ( n ) or any coefficient of a newform f ( z ). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $$k\ge 4$$ k ≥ 4 . We use these methods for weight 2 and 3 newforms and apply our results to L -functions of modular elliptic curves and certain K 3 surfaces with Picard number $$\ge 19$$ ≥ 19 . In particular, for the complete list of weight 3 newforms $$f_\lambda (z)=\sum a_\lambda (n)q^n$$ f λ ( z ) = ∑ a λ ( n ) q n that are $$\eta $$ η -products, and for $$N_\lambda $$ N λ the conductor of some elliptic curve $$E_\lambda $$ E λ , we show that if $$|a_\lambda (n)|<100$$ | a λ ( n ) | < 100 is odd with $$n>1$$ n > 1 and $$(n,2N_\lambda )=1$$ ( n , 2 N λ ) = 1 , then $$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , ± 41 , ± 43 , - 45 , ± 47 , 49 , ± 53 , 55 , ± 59 , ± 61 , ± 67 , - 69 , ± 71 , ± 73 , 75 , ± 79 , ± 81 , ± 83 , ± 89 , ± 93 ± 97 , 99 } . Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving $$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , - 45 , 49 , 55 , - 69 , 75 , ± 81 , ± 93 , 99 } .more » « less
An official website of the United States government
